Journal of Organometallic Chemistry, 373 (1989) 307-317 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands JOM 20050

Organometallarsine

X *. Carbonyl-dinitrosyl-organometallarsin-eisen und Dicarbonyl-nitrosyl-organometallarsin-cobalt Komplexe

Herbert Schumann* und Karl-Heinz Köhricht

Institut für Anorganische und Analytische Chemie der Technischen Universität Berlin, D-1000 Berlin 12 (Deutschland)

(Eingegangen den 2. Mai 1989)

Abstract

The reactions of $Fe(CO)_2(NO)_2$ or $Co(CO)_3(NO)$ with $As({}^tBu)_3$, $As({}^tBu)_2(M-Me_3)$, or $As({}^tBu)(MMe_3)_2$ (M = Si, Ge, Sn) proceed with the elimination of one CO ligand and the formation of the corresponding carbonyl-dinitrosyl-arsine-iron or dicarbonyl-nitrosyl-arsine-cobalt complexes, respectively. The UV and IR spectra as well as the 1H , ${}^{13}C$, ${}^{29}Si$, ${}^{59}Co$ and ${}^{119}Sn$ NMR spectra of the new complexes are described.

Zusammenfassung

 $Fe(CO)_2(NO)_2$ und $Co(CO)_3(NO)$ reagieren mit $As(^{Bu})_3$, $As(^{Bu})_2(MMe_3)$, $As(^{Bu})(MMe_3)_2$ oder $As(MMe_3)_3$ (M = Si, Ge, Sn) unter Abspaltung eines CO-Liganden und Bildung der entsprechenden Carbonyl-dinitrosyl-arsin-eisen Komplexe bzw. Dicarbonyl-nitrosyl-arsin-cobalt Komplexe. Die UV- und IR-Spektren, sowie die ¹H-, ¹³C-, ²⁹Si-, ⁵⁹Co- und ¹¹⁹-Sn-NMR Spektren der neuen Verbindungen werden mitgeteilt.

Einleitung

Wie bereits von uns an anderen Stellen mitgeteilt, reagieren die Komplexe der Pseudonickelcarbonyl-Serie, Ni(CO)₄, Co(CO)₃(NO), Fe(CO)₂(NO)₂ und Mn(CO)(NO)₃, mit Organometallphosphinen vom Typ P(^tBu)_n(MMe₃)_{3-n} (M = Si, Ge, Sn; n = 0, 1, 2, 3) unter Abspaltung eines CO-Liganden und Bildung der

^{*} Für Teil IX siehe Lit. 1.

Komplexe (CO)₃NiP(^tBu)_n(MMe₃)_{3-n} [2], (CO)₂(NO)CoP(^tBu)_n(MMe₃)_{3-n} [3], (CO)(NO)₂FeP(^tBu)_n(MMe₃)_{3-n} [4], und (NO)₃MnP(^tBu)_n(MMe₃)_{3-n} [5]. Dies Verbindungen wurden eingehend kernresonanzspektroskopisch untersucht [6,7].

Entsprechende Untersuchungen mit homologen Arsinverbindungen vom Typ $As(^{t}Bu)_{n}(MMe_{3})_{3-n}$ beschränken sich auf Reaktionen der bisher beschriebenen Ligandensysteme $As(^{t}Bu)_{3}$ [1], $As(^{t}Bu)_{2}(MMc_{3})$ (M = Si, Gc) [1], und $As(MMe_{3})_{3}$ (M = Si [1,8,9], Ge [1,10], Sn [1,11,12]) mit den Übergangsmetallkomplexen Fe(CO)₅, Cr(CO)₆, Mo(CO)₆, W(CO)₆, C₅H₅Mn(CO)₃ und MeC₅H₄Mn(CO)₃ [1,13]. Auch hierbei kommt es jeweils zur Verdrängung eines CO-Liganden durch die entsprechende Arsinverbindung.

In Fortführung dieser Untersuchungen haben wir zunächst die noch fehlenden Glieder aus der genannten Organometallarsin-Reihe synthetisiert, alle Glieder dieser Reihe mit $Fe(CO)_2(NO)_2$ und $Co(CO)_3(NO)$ umgesetzt, und die aus diesen Reaktionen erhaltenen Komplexe im Hinblick auf ihre chemischen und physikalischen Eigenschaften untersucht.

Darstellung der Liganden

As(^tBu)₃ (1), As(SiMe₃)₃ (2), As(GeMe₃)₃ (5) und As(SnMe₃)₃ (8) wurden nach bereits publizierten Methoden erhalten [1]. Die Synthese der unsymmetrischen Organosilylarsine As(^tBu)(SiMe₃)₂ (3) und As(^tBu)₂(SiMe₃) (4) gelingt in befriedigenden Ausbeuten durch Umsetzung von (Me₃Si)₂Mg [14] mit ^tBuAsCl₂ bzw. (^tBu)₂AsCl in kaltem Ether unter Lichtausschluß:

$$(Me_{3}Si)_{2}Mg(DME) + {}^{t}BuAsCl_{2} \xrightarrow{Etner} As({}^{t}Bu)(SiMe_{3})_{2} + MgCl_{2} + DME$$
(3)
$$(Me_{3}Si)_{2}Mg(DME) + 2({}^{t}Bu)_{2}AsCl \xrightarrow{Ether} 2 As({}^{t}Bu)_{2}(SiMe_{3}) + MgCl_{2} + DME$$
(4)

Die entsprechenden Germaniumderivate 6 und 7, sowie die Zinnderivate 9 und 10 erhielten wir durch Umsetzung der Organosilylarsine 3 oder 4 mit $(CH_3)_3$ GeCl bzw. $(CH_3)_3$ SnCl ohne Verwendung eines Lösungsmittels. Die kontinuierliche destillative Entfernung des sich bildenden Trimethylchlorsilans bewirkt die Verschiebung des Reaktionsgleichgewichtes zu Gunsten der neuen Verbindungen, die so in Ausbeuten von ca. 80% erhalten werden:

$$As(^{t}Bu)(SiMe_{3})_{2} + 2 Me_{3}MCl \rightarrow As(^{t}Bu)(MMe_{3})_{2} + 2 Me_{3}SiCl$$

$$M = Ge(6)$$

$$M = Sn(9)$$

$$As(^{t}Bu)_{2}(SiMe_{3}) + Me_{3}MCl \rightarrow As(^{t}Bu)_{2}(MMe_{3}) + Me_{3}SiCl$$

$$M = Ge(7)$$

$$M = Sn(10)$$

Darstellung der Komplexe

Tricarbonyl-mononitrosyl-cobalt reagiert mit äquimolaren Mengen $As(^{t}Bu)_{3}$ (1) bzw. der Organometallarsine 2–10 in Tetrahydrofuran bei 40°C unter Abspaltung

einer CO-Gruppe und Bildung von 1a bzw. der organometall-arsin-substituierten Dicarbonyl-nitrosyl-cobalt Komplexe 2a-10a, die als rote Kristallpulver in guten Ausbeuten isoliert werden können:

$$Co(CO)_{3}(NO) + As(^{t}Bu)_{3} \xrightarrow{-CO} (CO)_{2}(NO)Co-As(^{t}Bu)_{3}$$

$$(1) \qquad (1a)$$

$$Co(CO)_{3}(NO) + As(^{t}Bu)_{n}(MMe_{3})_{3-n} \xrightarrow{-CO} (CO)_{2}(NO)Co-As(^{t}Bu)_{n}(MMe_{3})_{3-n}$$

$$(2-10) \qquad (2a-10a)$$

n	$M = S_1$	Ge	Sn
0	2, 2a	5, 5a	8, 8a
1	3 , 3 a	6, 6a	9, 9a
2	4 , 4 a	7, 7a	10, 10a

Dicarbonyl-dinitrosyl-eisen reagiert bereits bei Raumtemperatur mit den Liganden 1-10 unter Bildung der rotbraun gefärbten Komplexe 1b-10b, in denen ebenfalls nur eine CO-Gruppe des Ausgangskomplexes durch einen Arsin-Liganden ersetzt ist:

Die Bildungsgeschwindigkeit der Komplexe nimmt mit steigender Zahl der am Arsin-Liganden gebundenen t-Butylgruppen ab: 2, 5, 8 > 3, 6, 9 > 4, 7, 10 > 1. So sind 1a und 1b nur nach vorheriger photochemischer Anregung der beiden Ausgangskomplexe in zufriedenstellenden Ausbeuten zu erhalten.

Die Komplexe 1a-10a und 1b-10b, die durch Umkristallisieren aus Pentan oder Hexan bei -40 °C in analysenreiner Form erhalten werden, sind luft- und feuchtigkeitsempfindlich. Unter Stickstoff oder Argon können sie jedoch bei -35 °C über Monate hinweg ungefährdet aufbewahrt werden. Alle Komplexe lösen sich sehr gut in polaren organischen Lösungsmitteln wie THF oder Methylenchlorid, wesentlich schlechter dagegen in unpolaren Solventien wie Benzol oder Pentan.

Spektroskopische Untersuchungen

4, 4b 7, 7b 10, 10b

Schwingungsspektren

2

In den Infrarot-Spektren der in Nujol gelösten Cobalt-Komplexe 1a-10a beobachtet man entsprechend der Lokalsymmetrie C_s für das Co(CO)₂(NO)As-Gerüst zwei ν (CO)-Schwingungen und eine ν (NO)-Schwingung um 2019 (A') und 1963 (A'') bzw. 1748 cm⁻¹ (A'). Die exakten Frequenzwerte der einzelnen Komplexe weichen nur um maximal ± 5 cm⁻¹ von diesen Mittelwerten ab, so daß mit Hilfe

IR-Spektren d	ler Komplexe	Fe(CO)(NO) ₂	L (1b-1	(0b) ^a und	von $Fe(CO)_2(NO)_2^a$

Ligand L	v(CO)	v(NC))	$\nu_{as}(\text{FeN}_2)$	$\nu_s(\text{FeN}_2)$	δ(FeNO)	v(FeC)	δ(FeCO)
CO ^b	2092, 2045	1808	1756	660	605	660	450, 380	480
$As(^{1}Bu)_{3}(1b)$	1991	1755	1714	668		668	452	468
$As(SiMe_3)_3$ (2b)	1987	1749	1709	660	615	660	395	461
$As(^{t}Bu)(SiMe_{1})_{2}$ (3b)	1988	1750	1711	664	618	664		468
$As(^{1}Bu)_{2}(SiMe_{3})(4b)$	1990	1758	1719	664	618	664	375	468
$As(GeMe_3)_3$ (5b)	1985	1745	1705	660	618	660	398	460
$As(^{t}Bu)(GeMe_{3})_{2}$ (6b)	1989	1751	1712	662	618	662	395	463
$As(^{t}Bu)_{2}(GeMe_{3})(7b)$	1990	1753	1714	662	619	662	375	465
$As(SnMe_3)_3$ (8b)	1980	1737	1692	659	613	659	398	458
$As(^{1}Bu)(SnMe_{3})_{2}$ (9b)	1989	1751	1712	660	618	660	390	463
$As(^{t}Bu)_{2}(SnMe_{3})$ (10b)	1985	1743	1699	662	619	662	378	465

^{*a*} Vermessen mit Perkin-Elmer 475 in Nujol, Wellenzahlen in cm^{-1} ; ebenfalls beobachtete, dem Ligandengerüst zuzuordnende Schwingungen sind nicht aufgeführt. ^{*h*} In n-Hexan.

der Schwingungspektroskopie keine differenzierten Aussagen über die Bindungsverhältnisse in diesen Komplexen möglich sind. Etwas ausgeprägter sind die Unterschiede bezüglich vergleichbarer Schwingungen in den Spektren der Eisenkomplexe **1b–10b**. Die Bandenzuordnung erfolgte in Anlehnung an Poletti et al. [15] (Tab. 1).

Die UV-Spektren der Cobalt-Komplexe 1a-10a zeigen neben der starken Charge-Transfer-Bande bei 280 nm jeweils eine deutlich schwächere Absorption zwischen 387 und 390 nm. In den UV-Spektren der Eisen-Komplexe 1b-10b beobachtet man ebenfalls eine sehr intensive Charge-Transfer-Bande bei 285 nm, die an ihren Flanken nur äußerst schwach ausgebildete Schultern aufweist.

Kernresonanzspektren

In den ¹H-NMR-Spektren der Komplexe **1a–10a** und **1b–10b** (Tab. 2) verursachen die Methylprotonen erwartungsgemäß das Auftreten von Singulett-Signalen, die im Falle der Silicium-Verbindungen jeweils von schwachen Satelliten Dubletts entsprechend der Kopplung ²J(²⁹Si,H), und im Falle der Zinn-Verbindungen jeweils von zwei Satelliten-Dubletts entsprechend der Kopplung ²J(^{117/119}Sn,H) umgeben sind. Die geringen Veränderungen der Werte der Chemischen Verschiebung δ der Methylsignale beim Übergang vom freien Arsinliganden zum entsprechenden Komplex sind lediglich auf Konzentrationsabhängigkeiten zurückzuführen. Dies steht im Einklang mit den Ergebnissen der bereits vorliegenden Untersuchungen an analogen Phosphin-substituierten Komplexen der Pseudonickelcarbonylserie [2,3,4].

Die protonenentkoppelten ¹³C-NMR-Spektren der Arsinliganden 1–10 sowie ihrer Cobalt- bzw. Eisenkomplexe 1a–10a und 1b–10b zeigen Singulettsignale, deren Chemische Verschiebung kaum konzentrationsabhängig ist (Tab. 3). Der Ersatz von Me₃M-Gruppen durch elektronegativere 'Bu-Gruppen führt sowohl in den freien Liganden, als auch in beiden Komplexreihen zu höheren δ -Werten für die Signale der quartären C-Atome und zu niedrigeren δ -Werten für die Methyl-Kohlenstoffatome der 'Bu-Gruppen, während die erwartete Abnahme der δ -Werte für die an Si, Ge oder Sn gebundenen Methyl-Kohlenstoffatome nur in der Reihe der freien Liganden zu beobachten ist.

Tabelle 2

ć	
Q,	
H)	
ŝ	
8 ₂	
ĝ	
H ₃ C	
. ð (
2 A	
101	
4	
°L(
õ	
ž	
8	
Fe(
ехе	
lqm	
Хo	
der	
pu	
n (e	
01-	
(1 a-	
)L	
ž	
)2(
U U	
S	
exe	
ldm	
Кo	
der	
6	~
Ξ	⁹ Sn
en (₹H
and	\tilde{J}
lig	1
rsi	, Č
N N	¹⁷ Sn
freie	H
Jer j	- ² J
n " c	.w.zc
ater	31) E
Å-D	1 ²⁹ S
ĪWi	Z(E
H-H	Ĩ
-	~

Ligand L					Co(CO)	³ (NO)L			Fe(CO)	(NO) ₂ L			,
	δı	\$2	<i>r</i> ¹	J2	δ1	δ_2	J,	J_2	ô,	δ2	J_1	J_2	1
As('Bu), (1, 1a, 1b)	1.36			(1.26		,		1.26	1			
As(SiMe,), (2, 2a, 2b)	ſ	0.44	6.7	۱	ł	0.32	6.7	I	i	0.33	6.8	ł	
As(¹ Bu)(SiMe ₃), (3, 3a, 3b)	1.47	0.42		I	1.30	0.34	6.5	ι	1.26	0.31	6.6	I	
As('Bu),(SiMe,) (4, 4a, 4b)	1.43	0.40	6.6	I	1.28	0.38	6.6	۱	1.26	0.32	6.7	I	
As(GeMe,), (5, 5a, 5b)	ſ	0.55	ł	ı	۱	0.51	ì	I	I	0.49	ł	١	
As(¹ Bu)(GeMe,), (6, 6a, 6b)	1.45	0.55	1	I	1.28	0.48	I	ı	1.28	0.50	3	I	
As('Bu), (GeMe ₂) (7, 7a, 7b)	1.41	0.53	I	١	1.28	0.50	L	1	1.24	0.47	J	١	
As(SnMe ₃) ₃ (8, 8a, 8b)	ſ	0.42	49.5	51.8	ł	0.41	51.0	53.4	1	0.45	52.0	54.4	
As('Bu)(SnMe ₃), (9, 9a, 9b)	1.48	0.44	48.3	50.5	1.33	0.41	50.4	52.5	1.48	0.44	50.7	53.0	
As('Bu) ₂ (SnMe ₃) (10, 10a, 10b)	1.42	0.40	46.4	48.6	1.27	0.31	49.3	51.6	1.42	0.40	49.8	52.0	
													1

^{*a*} Bruker WP 80 (80 MHz) in C_6D_6 gegen TMS, δ in ppm, *J* in Hz.

Ligand L	Ч				Co(CC	r(on) ^z (c	ب		Fe(CO	$(NO)_2L$		
	δ1	δ_2	ô,	J	8,1	δ2	ô,	3	δ1	δ_2	ô3	ſ
As('Bu), (1, 1a, 1b)	35.8	32.0	1	status Managana mang bina dalah kara kala mangana mangana kara pantangan na panganangan	41.8	31.0	-	a na gu na chun an an ann an ann an ann an ann an ann an a	42.8	31.0		n an
As(SiMe ₃) ₃ (2, 2a, 2b)	i	ł	4.3	Autor:	ł	1	2.3	Prime a	1	ł	2.0	van
As(¹ Bu)(SiMe ₃) ₂ (3, 3a, 3b)	32.1	35.3	3.3	ŧ	35.4	32.9	1.6	f	36.2	32.9	1.9	
$As(^{4}Bu)_{2}(SiMe_{3})$ (4, 4a, 4b)	33.9	33.3	3.0	inter	38.3	31.6	2.0		39.5	31.7	2.1	ab.
As(GeMe ₃), (5, 5a, 5b)	1	1	4.5	ţ	ł	ł	2.8	ł	ł	-	2.9	reter
As('Bu)(GeMe ₃) ₂ (6, 6a, 6b)	32.6	35.0	3,2	ŧ	36.3	32.7	2.2	yangin	37.2	32.7	2.3	saas
As(¹ Bu) ₂ (GeMe ₃) (7, 7a, 7b)	34.2	33.1	3.0	ſ	39.0	31.5	2.6	1	40.0	31.5	2.6	ł
As(SnMe ₃) ₃ (8, 8a, 8b)	ł	1	- 3.9	271.5/288.8	١	1	- 3.0	290.4/303.3	ł	1	- 3.8	295.5/308.4
$As(^{1}Bu)(SnMe_{3})_{2}$ (9, 9a, 9b)	32.8	36.6	5.7	266.3/281.1	35.9	33.8	- 6.0	286.7/299.6	36.6	33.7	- 5.8	289.9/303.6
As('Bu) ₂ (SnMe ₃) (10, 10a, 10b)	34.4	33.8	-6.0	245.6/257.4	39.0	32.0	- 7.6	283.0/295.9	39.9	32.00	- 5.6	287.5/300.4

¹³ C-NMR-Daten^{*a*} der freien Arsinliganden (1–10), der Komplexe Co(CO)₂(NO)L (1a–10a) und der Komplexe Fe(CO)(NO)₂L (1b–10b) ($\delta_1 = \delta(H_3C^{13}CAs)$, $\delta_2 = \delta(H_3^{13}CCAs)$, $\delta_3 = \delta(H_3^{13}CMAs)$, $J = {}^{1}J({}^{13}C^{117/119}Sn)$

Tabelle 3

 a Bruker WP 80 (20.15 MHz) in C_6D_6 gegen TMS, δ in ppm, J in Hz.

Tabelle 4

²⁹ Si-	^a ur	d 119Si	n-NMR-D	aten ^b der f	freien Arsinl	iganden (2 , 3	6, 4, 8, 9, 10)), der Komple:	xe $Co(CO)_2(N)$	NO)L
(2 a,	3a, 4	a, 8a, 9	a , 10a) un	d der Kon	nplexe Fe(C	0)(NO) ₂ L (2	2b, 3b, 4b, 8	8b, 9b, 10b)		

Ligand L	Ligand		Co(CO)	2(NO)L	Fe(CO)(NO) ₂ L
	$\delta(^{29}\text{Si})$	$\delta(^{119}\text{Sn})$	$\delta(^{29}\text{Si})$	$\delta(^{119}\text{Sn})$	$\delta(^{29}\text{Si})$	$\delta(^{119}\text{Sn})$
$\overline{As(SiMe_3)_3}$ (2, 2a, 2b)	2.82	-	8.52	~	9.91	
$As(^{t}Bu)(SiMe_{3})_{2}$ (3, 3a, 3b)	-1.03	~	7.79	~	9.14	_
$As(^{t}Bu)_{2}(SiMe_{3})$ (4, 4a, 4b)	-0.42	~	7.66	-	9.09	-
$As(SnMe_3)_3$ (8, 8a, 8b)		6.2	-	31.7	-	37.8
$As(^{t}Bu)(SnMe_{3})_{2}$ (9, 9a, 9b)	-	-21.2	-	6.5	_	13.8
$As(^{t}Bu)_{2}(SnMe_{3})$ (10, 10a, 10b)	-	-48.8	-	-15.2	-	-7.6

^a Bruker WP 80 (15.9199 MHz) in C₆D₆ gegen TMS; ^b Bruker SXP 4-100 (33.5589 MHz) in C₆D₆ gegen Sn(CH₃)₄; δ in ppm.

Die ²⁹Si-NMR-Spektren der Arsinliganden 2, 3 und 4, sowie der sich von ihnen ableitenden Cobalt- und Eisenkomplexe 2a-4a bzw. 2b-4b wurden mit Hilfe der INEPT-Technik [16] aufgenommen (Tab. 4). Das Signal der symmetrischen Verbindung 2 ist gegenüber TMS um 2.82 ppm zu tieferem Feld verschoben. Die Substitution einer Me₃Si-Gruppe durch die elektronegativere t-Butyl-Gruppe in 3 hat, entgegen der Erwartung, eine Zunahme der Abschirmung entsprechend einem δ -Wert von -1.03 ppm zur Folge. Wie der δ -Wert von -0.42 ppm für 4 zeigt, bewirkt die Einführung einer zweiten t-Butyl-Gruppe zwar einen Rückgang der Abschirmung gegenüber 3, jedoch gegenüber 2 immer noch eine deutliche Zunahme der Abschirmung. Die ²⁹Si-Resonanzen der zugehörigen Cobalt- und Eisen-Komplexe zeigen ebenfalls das Phänomen der zunehmenden Abschirmung, allerdings ohne die für die freien Liganden beobachtete Unstetigkeit.

Die ¹¹⁹Sn-NMR-Spektren der freien Liganden 8, 9 und 10, sowie der Komplexe 8a-10a bzw. 8b-10b (Tab. 4) bestätigen die Ergebnisse der ²⁹Si-NMR-Spektren und sind in allen drei Verbindungsreihen im Sinne zunehmender Abschirmung des Zinnatoms bei fortschreitendem Ersatz von Me₃Sn-Gruppen durch t-Butyl-Einhei-

Tabelle 5

Chemische Verschiebungen $\delta({}^{59}Co)$ von Co(CO)₃(NO) und der Komplexe Co(CO)₂(NO)L (**2a-10a**). Bruker SXP 4-100, (21.26 MHz), in THF. δ gegen gesättigte wäßrige K₃[Co(CN)₆]-Lösung. Meßgenauigkeit ± 15 ppm

Komplex	δ(⁵⁹ Co)	
Co(CO) ₁ (NO)	-1320	
$(CO)_2(NO)Co-As(^{t}Bu)_3$ (1a)	-1136	
$(CO)_2(NO)Co-As(SiMe_3)_3$ (2a)	-1150	
$(CO)_2(NO)Co-As(^{1}Bu)(SiMe_3)_2$ (3a)	- 1097	
$(CO)_2(NO)Co-As(^{1}Bu)_2(SiMe_3)$ (4a)	-1102	
$(CO)_2(NO)Co-As(GeMe_3)_3$ (5a)	- 928	
$(CO)_2(NO)Co-As(^{1}Bu)(GeMe_3)_2$ (6a)	-1040	
$(CO)_{2}(NO)Co-As(^{1}Bu)_{2}(GeMe_{3})$ (7a)	-1105	
$(CO)_2(NO)Co-As(SnMe_3)_3$ (8a)	- 786	
$(CO)_2(NO)Co-As(^{t}Bu)(SnMe_3)_2$ (9a)	- 1009	
$(CO)_2(NO)Co-As(^{t}Bu)_2(SnMe_3)$ (10a)	- 1067	

ten zu deuten. Gleiche Verhältnisse findet man bei den homologen Phosphorliganden, $P(^{t}Bu)_{n}(SnMe_{3})_{3-n}$, und deren Cobalt- und Eisenkomplexen, $(CO)_{2}(NO)Co(L)$ und $(CO)(NO)_{2}Fe(L)$ [3,4].

Die ⁵⁹Co-NMR-Spektren der Komplexe **1a-10a** (Tab. 5) zeigen erwartungsgemäß jeweils nur ein Singulett, das wegen niedriger Molekülsymmetrie und des hohen Kernspins von ⁵⁹Co (I = 7/2) sehr breit ist. Die Halbwertsbreiten der untersuchten Verbindungen steigen mit geringer werdender Symmetrie von 1.2 kHz auf etwa 3.6 kHz an. Die δ -Werte zeigen für die Germanium- und Zinn-haltigen Komplexe in der Ligandenfolge As(MMe₃)₃ \rightarrow As(^tBu)(MMe₃)₂ \rightarrow As(^tBu)₂(MMe₃) eine deutliche Verschiebung nach höherem Feld, während die siliciumhaltigen Komplexe ein umgekehrtes Verhalten aufweisen. Die gleiche Beobachtung konnten wir auch schon bei den homologen Cobalt-Phosphin-Komplexen machen [3].

Experimentelles

Alle Reaktionen wurden unter sorgfältig von Sauerstoff und Wasser befreitem Argon in unter Vakuum ausgeheizten Apparaturen durchgeführt.

t-Butylbis(trimethylsilyl)arsin (3)

In einem 250 ml Kolben werden 7.54 g (29 mmol) Mg[Si(CH₃)₃]₂(DME) in 150 ml Diethylether aufgeschlämmt und auf -70 °C abgekühlt. Unter Lichtausschluß tropft man dazu innerhalb von 4 h eine Lösung von 5.87 g (29 mmol) 'BuAsCl₂ in 30 ml Diethylether, läßt dann das Reaktionsgemisch auf Raumtemperatur erwärmen, saugt vom gebildeten MgCl₂-Niederschlag über eine D4-Fritte ab und wäscht diesen mehrmals mit Pentan aus. Vom klaren Filtrat und den damit vereinigten Waschlösungen wird das Lösungsmittel im Vakuum entfernt und die zurückbleibende schwachgelbe Flüssigkeit im Vakuum fraktioniert destilliert. Bei 44-48° C/0.04 Torr sieden 4.91 g 3 (61% d.Th.).

Di(t-butyl)trimethylsilylarsin (4)

Analog zur Synthese von 3 erhält man aus 4.2 g (16 mmol) Mg[Si(CH₃)₃]₂(DME) in 150 ml Ether und 7.2 g (32 mmol) ¹Bu₂AsCl 5.8 g (69% d.Th.) 4 als klare, leicht ölige Flüssigkeit. Sdp.: $42-44^{\circ}$ C/0.035 Torr.

t-Butylbis(trimethylgermyl)arsin (6)

In einem 50 ml Schlenkkolben mit Tropftrichter werden zu 5.3 g (19 mmol) $As(^{t}Bu)(SiMe_{3})_{2}$, gelöst in 25 ml Pentan, unter Rühren 5.8 g (38 mmol) $Me_{3}GeCl$, gelöst in 10 ml Pentan langsam zugetropft. Nach beendeter Zugabe wird der Kolben mit Aluminiumfolie abgedunkelt und 48 h bei Raumtemperatur gerührt. Man zieht das gebildete $Me_{3}SiCl$ im Ölpumpenvakuum ab und destilliert die verbleibende ölige Substanz bei vermindertem Druck. Ausbeute: 4.7 g (67% d.Th) farbloses **6**. Sdp.: $68-70^{\circ}C/0.12$ Torr.

Di(t-butyl)trimethylgermylarsin (7)

Analog zur Synthese von **6** erhält man aus 8.9 g (34 mmol) As(^tBu)₂(SiMe₃) und 5.2 g (34 mmol) Me₃GeCl nach 18 h 8.2 g (78% d.Th.) 7 als ölige Flüssigkeit. Sdp.: $47-50^{\circ}$ C/0.21 Torr.

t-Butylbis(trimethylstannyl)arsin (9)

Analog zur Synthese von 6 erhält man aus 6.5 g (24 mmol) $As(^{t}Bu)(SiMe_{3})_{2}$ und 9.5 g (48 mmol) Me_{3}SnCl nach 48 h 8.6 g (78% d.Th.) 9. Sdp.: 58-60 ° C/0.08 Torr.

Di(t-butyl)trimethylstannylarsin (10)

Analog zur Synthese von 6 erhält man aus 16.0 g (61 mmol) $As(^{t}Bu)_{2}(SiMe_{3})$ und 12.2. g (61 mmol) Me₃SnCl nach 24 h 17.1 g (79% d.Th) **10**. Sdp.: 48–50 ° C/0.12 Torr.

Dicarbonyl-nitrosyl-organometallarsin-cobalt-Komplexe 1a-10a und Carbonyl-dinitrosyl-organometallarsin-eisen-Komplexe 1b-10b

Zu den in Tabelle 6 angegebenen Mengen $Co(CO)_3(NO)$ bzw. den in Tabelle 7 angegebenen Mengen $Fe(CO)_2(NO)_2$, gelöst in 10 ml Tetrahydrofuran, werden mit Hilfe einer Spritze die angegebenen Mengen der Arsin-Liganden 1–10 gegeben und

Tabelle 6

Reaktionsansätze, Ausbeuten und Zersetzungsbereiche der Komplexe Co(CO)₂(NO)L (1a-10a)

	Ligand	i L	Co(C	CO) ₃ (NO)	Komp	lex Co($CO)_2(NO)$	D)L
	Einwa	age	Einw	aage		Roha	usbeute	Zersetzungs-
	g	mmol	g	mmol		g	%	bereich (°C)
$1 \operatorname{As}(^{1}\operatorname{Bu})_{3}$	1.50	6.1	1.1	6.4	la	2.2	92	110-130
$2 \operatorname{As}(\operatorname{SiMe}_3)_3$	1.9	6.5	1.1	6.4	2a	2.1	75	60-80
$3 \operatorname{As}(^{t}\operatorname{Bu})(\operatorname{SiMe}_{3})_{2}$	2.5	9.0	1.5	8.7	3a	3.4	92	60-70
$4 \operatorname{As}(^{t}\operatorname{Bu})_{2}(\operatorname{SiMe}_{3})$	2.2	8.4	1.5	8.7	4a	2.8	82	60-80
$5 \operatorname{As}(\operatorname{GeMe}_3)_3$	2.8	6.5	1.1	6.4	5a	3.8	82	120-140
6 As('Bu)(GeMe ₃) ₂	2.0	5.4	0.9	5.2	6a	2.2	82	110-130
$7 \operatorname{As}(^{1}\operatorname{Bu})_{2}(\operatorname{GeMe}_{3})$	2.1	6.8	1.2	6.9	7a	2.9	94	105-120
8 As $(SnMe_3)_3$	4.9	8.7	1.5	8.7	8 a	4.2	69	140-160
9 As(t Bu)(SnMe ₃) ₂	3.7	8.1	1.4	8.1	9a	4.2	86	110-130
$10 \text{ As}(^{1}\text{Bu})_{2}(\text{SnMe}_{3})$	1.9	5.4	0.9	5.2	10a	2.4	92	90-120

Tabelle 7

Reaktionsansätze, Ausbeuten und Zersetzungsbereiche der Komplexe Fe(CO)(NO)₂L (1b-10b)

	Ligar	nd L	Fe(C	$\overline{O}_2(NO)_2$	Komp	lex Fc(C	CO)(NO)	2L
	Einw	aage	Einw	aage		Roha	usbeute	Zersetzungs-
	g	mmol	g	mmol		g	%	bereich (°C)
$1 \operatorname{As}(^{1}\operatorname{Bu})_{3}$	2.1	8.5	1.5	8.7	1b	3.1	93	90-100
$2 \operatorname{As}(\operatorname{SiMe}_3)_3$	2.4	8.2	1.4	8.1	2b	2.8	79	60-80
$3 \operatorname{As}(^{1}\operatorname{Bu})(\operatorname{SiMe}_{3})_{2}$	1.9	6.8	1.2	7.0	3b	2.3	80	70-80
$4 \operatorname{As}(^{1}\operatorname{Bu})_{2}(\operatorname{SiMe}_{3})$	2.3	8.7	1.5	8.7	4b	3.0	85	60-70
$5 \operatorname{As}(\operatorname{GeMe}_{1})_{1}$	2.5	5.8	1.0	5.8	5b	2.6	78	90-110
$6 \operatorname{As}('Bu)(\operatorname{GeMe}_3)_2$	2.0	5.4	0.9	5.2	6Ь	2.2	82	80-100
$7 \operatorname{As}(^{1}\operatorname{Bu})_{2}(\operatorname{GeMe}_{1})$	2.3	7.5	1.3	7.5	7b	3.2	95	100-120
8 As $(SnMe_3)_3$	3.7	6.5	1.1	6.4	8b	3.7	81	130150
9 As(1 Bu)(SnMe ₃) ₂	4.2	9.1	1.6	9.3	9b	4.1	75	110-130
10 As(1 Bu) ₂ (SnMe ₃)	2.0	5.7	1.0	5.8	10b	2.5	88	100-120

bei den Umsetzungen mit $Fe(CO)_2(NO)_2$ bei Raumtemperatur, bei denen mit $Co(CO)_3(NO)$ bei 40°C gerührt. Die Reaktion ist beendet, wenn ein mit dem Reaktionsgefäß verbundener paraffingefüllter Gasometer keine CO-Entwicklung mehr anzeigt. Das Lösungsmittel wird dann abgezogen und das Rohprodukt mehrmals aus Pentan bei -35°C umkristallisiert. Die Rohausbeuten und Zersetzungspunkte der isolierten Komplexe sind aus den Tabellen 6 und 7, die Analysendaten aus Tabelle 8 zu entnehmen.

Tabelle 8

Analysenwerte der Komplexe Co(CO)₂(NO)L (1a-10a) und Fe(CO)(NO)₂L (1b-10b)

Komplex	Summenformel	Analyset	1	Molmasse
		(Ber. (Ge	ef.) (%))	
		С	Н	
$\overline{\text{Co(CO)}_2(\text{NO})\text{As}(^1\text{Bu})_3}$ (1a)	C14H27AsCoNO3	42.98	6.96	391.224
		(42.19)	(6.88)	
$Co(CO)_2(NO)As(SiMe_3)_3$ (2a)	C ₁₁ H ₂₇ AsCoNO ₃ Si ₃	30.06	6.19	439.464
		(30.66)	(6.27)	
$Co(CO)_2(NO)As(^{1}Bu)(SiMe_3)_2$ (3a)	C ₁₂ H ₂₇ AsCoNO ₃ Si ₂	33.04	6.43	423.385
		(33.63)	(6.42)	
$Co(CO)_2(NO)As(^{1}Bu)_2(SiMe_3)$ (4a)	C ₁₃ H ₂₇ AsCoNO ₃ Si	38.33	6.68	407.306
		(37.72)	(6.53)	
$Co(CO)_2(NO)As(GeMe_3)_3$ (5a)	C ₁₁ H ₂₇ AsCoGe ₃ NO ₃	23.06	4.75	572.994
		(23.00)	(4.70)	
$Co(CO)_2(NO)As(^{t}Bu)(GeMe_3)_2$ (6a)	$C_{12}H_{27}AsCoGe_2NO_3$	28.13	5.31	512.405
		(27.90)	(5.18)	
$Co(CO)_2(NO)As(^{t}Bu)_2(GeMe_3)(7a)$	C ₁₃ H ₂₇ AsCoGeNO ₃	34.56	6.02	451.816
		(35.17)	(6.12)	
$Co(CO)_2(NO)As(SnMe_3)_3$ (8a)	C ₁₁ H ₂₇ AsCoNO ₃ Sn ₃	18.57	3.83	711.294
		(18.57)	(3.88)	
$Co(CO)_2(NO)As(^{t}Bu)(SnMe_3)_2$ (9a)	$C_{12}H_{27}$ AsCoNO ₃ Sn ₂	23.84	4.50	604.605
		(23.62)	(4.50)	
$Co(CO)_2(NO)As(^{t}Bu)_2(SnMe_3)(10a)$	C ₁₃ H ₂₇ AsCoNO ₃ Sn	31.37	5.47	497.916
		(31.36)	(5.56)	
$Fe(CO)(NO)_2As(^{t}Bu)_3$ (1b)	$C_{13}H_{27}AsFeN_2O_3$	40.02	6.98	390.132
		(40.47)	(7.05)	
$Fe(CO)(NO)_2As(SiMe_3)_3$ (2b)	C ₁₀ H ₂₇ AsFeN ₂ O ₃ Si ₃	27.40	6.21	438.372
		(27.36)	(6.17)	
$Fe(CO)(NO)_2As(^1Bu)(SiMe_3)_2$ (3b)	C ₁₁ H ₂₇ AsFeN ₂ O ₃ Si ₂	31.29	6.44	422.292
		(30.77)	(6.38)	
$Fe(CO)(NO)_2As(^{t}Bu)_2(SiMe_3)$ (4b)	$C_{12}H_{27}$ AsFeN ₂ O ₃ Si	35.48	6.70	406.212
		(35.42)	(6.66)	
$\operatorname{Fe(CO)(NO)}_{2}\operatorname{As}(\operatorname{GeMe}_{3})_{3}$ (5b)	$C_{10}H_{27}$ AsFeGe ₃ N ₂ O ₃	21.00	4.76	571.902
		(20.68)	(4.75)	
$Fe(CO)(NO)_2 As(^{t}Bu)(GeMe_3)_2$ (6b)	$C_{11}H_{27}$ AsFeGe ₂ N ₂ O ₃	25.84	5.32	511.312
		(25.24)	(5.15)	
$Fe(CO)(NO)_2As(^{t}Bu)_2(GeMe_3)$ (7b)	$C_{12}H_{27}$ AsFeGeN ₂ O ₃	31.98	6.04	450.722
		(32.26)	(5.96)	
$Fe(CO)(NO)_2As(SnMe_3)_3$ (8b)	C ₁₀ H ₂₇ AsFeN ₂ O ₃ Sn ₃	16.91	3.83	710.235
		(17.47)	(3.92)	
$Fe(CO)(NO)_2As(^{t}Bu)(SnMe_3)_2$ (9b)	$C_{11}H_{27}$ AsFeN ₂ O ₃ Sn ₂	21.89	4.51	603.512
		(21.36)	(4.48)	
$Fe(CO)(NO)_2As(^1Bu)_2(SnMe_3)$ (10b)	C ₁₂ H ₂₇ AsFeN ₂ O ₃ Sn	29.01	5.48	496.822
	-	(29.56)	(5.41)	

Dank

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie danken wir für finanzielle Unterstützung dieser Arbeit.

Literatur

- 1 H. Schumann, U. Frank, W.W. du Mont und F. Marschner, J. Organomet. Chem., 222 (1981) 217.
- 2 H. Schumann, L. Rösch, H. Neumann und H.J. Kroth, Chem. Ber., 108 (1975) 1630.
- 3 H. Schumann und M. Meißner, Z. Naturforsch. B, 35 (1980) 594.
- 4 H. Schumann, H.J. Kroth und M. Meißner, Z. Naturforsch. B, 38 (1983) 705.
- 5 H. Schumann und M. Meißner, Z. Naturforsch. B, 35 (1980) 863.
- 6 H. Schumann, M. Meißner und H.J. Kroth, Z. Naturforsch. B, 35 (1980) 639.
- 7 M. Meißner, H.J. Kroth, K.H. Köhricht und H. Schumann, Z. Naturforsch. B, 36 (1981) 904.
- 8 A.B. Bruker, L.D. Balashova und L.Z. Soborovskii, Dokl. Akad. Nauk SSSR, 135 (1960) 843.
- 9 H. Bürger und U. Götze, J. Organomet. Chem., 12 (1968) 451.
- 10 I. Schumann und H. Blaß, Z. Naturforsch. B, 21 (1966) 1105.
- 11 R.E. Hester und K. Jones, J. Chem. Soc., Chem. Commun., (1966) 317.
- 12 H. Schumann und A. Roth, Chem. Ber., 102 (1969) 3713.
- 13 H. Schumann, G. Pfeiffer und H. Röser, J. Organomet. Chem., 44 (1972) C10.
- 14 L. Rösch, Angew. Chem., 89 (1977) 257.
- 15 A. Poletti, A. Santucci und A. Foffani, J. Mol. Struct., 3 (1969) 311.
- 16 G.A. Morris und R. Freemann, J. Am. Chem. Soc., 101 (1976) 1760.